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Abstract

A hierarchy of one-dimensional high-order remapping schemeseisepted and their per-
formance with respect to accuracy, convergence rate and dispénsiestigated. The schemes
are also compared based on traditional advection experiments in pediogiains and remap-
ping experiments in closed domains. The piecewise quartic mett@d) (s presented, based on
fifth-order accurate piecewise polynomials, and is motivated by the toesignificantly improve
hybrid coordinate systems of ocean climate models, which require thep@ng to be conser-
vative, monotonic and highly accurate. A limiter for this scheme is fully deed that never
decreases the polynomial degree, except at the location of extreera &tpiecewise constant
reconstruction is used. We assess the use of high-order explicit afiditr{ige., compact) es-
timates for the edge values and slopes needed to build the piecewise piismonbothPpPm
(piecewise parabolic method) ar@Mm. It is shown that all limited>Qm schemes perform signif-
icantly better than limiteePM schemes and thatQM schemes are much more cost-effective.

Keywords: reconstruction; remapping; piecewise parabolic methrrivf; piecewise quartic
method fQM); finite volume method; nonuniform grids; compact schemaesection schemes

1 Introduction

Remapping is a crucial component of most Arbitrary Lagrangtulerian (ALE) algorithms used
in computational fluid dynamics [12, 16, 13]. These alganshinvolve a regridding step, whereby
a new grid is generated based on some criteria, and a rentppf@Ep, whereby the variables are
remapped from the old grid onto the new grid (Figure 1). Itesgrally required that remapping be
both conservative and monotonic in the sense that no newreatshould be created nor existing
ones amplified. This is particularly important in applicais where boundedness of some variables
must be guaranteed.

The present study is motivated by the growing need to impx@récal coordinate systems in
ocean general circulation models used for climate pregfisti Over the last four decades or so,
the vast majority of ocean models have used a single codedsystem in the vertical, usually
aiming at a better representation of selected physicalgss®s. These ocean models, however,
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have difficulties resolving physical processes for whickytlwvere not primarily designed. Hybrid
coordinate ocean models have thus naturally emerged wheneettical grid is built by combining
different coordinate systems in different regions [15, 216 Due to the dynamical nature of the
ocean, these hybrid coordinate systems are adapted in tingecof the simulations, which means
that vertical remapping is a key component. The accuracgmwiapping is a major research issue
in hybrid coordinate ocean models that prevents the hylbaichéwork from being truly convincing;
presently, third-order reconstruction is used, at besthe@se models. Hence, there is a need to
explore higher-order representations.

An essential element of any remapping scheme lies in thensteaction. Based on a set of
cell averages on a given grid, the objective of a reconsomccheme is to accurately and con-
servatively represent the underlying, real data with pigse functions. Other constraints, such as
monotonicity, may also apply. In this paper, we limit ouvesl to piecewise polynomials but other
functions can be employed, such as rational functions,[£9J. Once the polynomial degree is cho-
sen (for example, degree two leading to piecewise parah@asimber of degrees of freedom must
be determined that will produce a unique polynomial overdsie There are basically two ways of
improving a polynomial reconstruction method. First, tikewracy of the estimates for the pending
degrees of freedom (e.g., edge values) may be improved n8eaten a monotonic reconstruction
is required, improving the limiter may yield more accuragsults. The latter domain of improve-
ment, in particular, has drawn most of the attention in theeaaf the piecewise parabolic method
(PPM) [4, 3, 11, 17, 10]. Besides these efforts, piecewise patyimbmethods have witnessed al-
most no improvement regarding the edge estimates or thefuggher-degree polynomials. Only
recently has the parabolic spline method been introduced also relies on polynomials of degree
two [20]. [5] clearly showed that successively high-ordelnesmes lead to more accurate solutions
for both limited and unlimited finite volume fluxes. The claséationship between their third-order
method andPminspired us to seek improvement by using higher-order pmiyials.

The objective of this paper is twofold. First, we introdube piecewise quartic method@m)
that uses piecewise polynomials of degree four and whicbutdknowledge, has never been pre-
sented before. A limiter is devised that ensures monotgyniiany PQM-based remapping scheme.
Second, a range of explicit and implicit schemes to estitfeteedge values and slopes is investi-
gated on the basis of accuracy, convergence analysis gnetsiian.

The main part (Section 2) of the paper focuses on recongirudtVe presenbQm and the wide
range of explicit and implicit schemes to estimate the eddees and slopes. The associateui
andPQm schemes are evaluated in terms of accuracy. A limiterfom is also described in detail.
Section 3 deals with remapping itself in the form of advettidAccuracy and dipersion analysis
serve as comparative tools. The treatment of boundarievered in Section 4 and some comments
on computational costs are made in Section 5. Conclusiengieen in Section 6.

2 Piecewise polynomial reconstruction schemes

Given a nonuniform grid of cell widthé; and cell averages;, for j = 1,2... N where N
is the number of cells, the objective is to determine a piesevwolynomial reconstruction that
accurately approximates the underlying data (Figure 2% g@diynomial over celj is notedR; and,
for convenience, use is made of a local coordirgate [0, 1] such that the global coordinateis
given by

rTo= Tioa + (xj+% *Ij_%)g
ri_1+hg,

)



where the global coordinates of the left and right cell ifgees arer; 1 andx; il , respectively.
Whichever polynomial reconstruction is considered, we ecflhe method to be locally conser-
vative. Hence, the cell average Bf must satisfy the following relationship :

h/ B dx—/R &) d¢ = u;, (2)

M

which constrains one degree of freedom. A trivial choiceigesort to piecewise constants, in which
case we simply hav&; = u;. The piecewise constant methaicfv) is only first-order accurate
and, when combined with remapping, is highly diffusive amd poor dispersion properties. Im-
provement is gained by using a second-order accurate schaseel on a linear reconstruction. The
piecewise linear methodr (M) requires an additional constraint. An estimate of the slgenerally
serves this purpose [18, 9]. Although more accurate andd#&sive thanpcm, PLM performs
poorly when extensive remapping occurs (e.g., many remgpgtieps or long integration times for
advection problems). We now focus on third-order and fifttieo reconstruction methods, referred
to as the piecewise parabolic methed 1) and the piecewise quartic methaelm), respectively.

2.1 The piecewise parabolic methodrpP M)

With the piecewise parabolic method, a parabola is consduaithin each cell. The general
form is

P(¢) = ag + a1€ + as€? 3

and three coefficients need be determined. In addition tenlfi@rcement of local conservation, Eq.
(2), two additional constraints are necessary. A naturalaghis to enforce the value of the parabola
at the left and right edges of the cell. If these edge valuesatredu; andup, respectively, and if
the cell average is denoted bythe coefficients of the parabola are

apy = ur,
ap = 6u—4ur —2ug, (4)
ay = 3(up+ug—24a).

The remaining part of the reconstruction process is to egérthe edge values. This is also where
much liberty is afforded. We note that low-order estimatethe edge values will impair the overall
quality of the reconstruction scheme. In particular, eates of edge values should be at least
third-order accurate in order for a global parabolic profilée exactly retrieved by a reconstruction
scheme based @M. Any higher-order estimates of edge values will provideexpivise parabolic
reconstruction that also passes this sanity check.

2.2 The piecewise quartic method§Qm)
The piecewise quartic method relies on piecewise polynismiadegree four:
Q&) = ap + m1€ + as&® + as&® + as&’. (5)

Five coefficients have to be determined and, therefore, éonstraints are needed in addition to
local conservation, Eq. (2). Similarly term, the edge values provide two constraints. Two nat-
ural additional constraints are the edge slopes. Givendfieahd right edge slopes; andu/,



respectively, and keeping the same notations for the edgewvand cell average as before, the five
coefficients read

ap = ur,
ap = uf,
_ 3. /
ay = 30u—12uR—18uL+§(uR—3uL), (6)
a3 = —60u+ 6u}, —4u’y + 28up + 32up,
)
ay = 3Oﬂ+§(u}{7u'L)fl5(uL+uR),
where
S T N
urp = 87£|£:0 - %'wzﬂij,% Jo
PR N N
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The above relationships are easily derived from Eq. (1).

Again, care must be taken to use estimates that are sufficiaoturate in order to exactly
retrieve a global quartic profile. Hence, at least fifth-ordecurate edge values and at least fourth-
order accurate edge slopes should be used to be consistartheiorder of the polynomials used
for the reconstruction. Because both the edge values apédslinust be provided, a great number
of possible combinations is theoretically possible.

We now turn our attention to the estimation of edge valuesstoyes by using both explicit and
implicit (i.e., compact) schemes.

2.3 Edge-value estimates

To estimate the edge values, explicit or implicit schemesheaused. We refer to explicit schemes
as those schemes that provide estimates via closed-forrassipns. Implicit schemes, on the other
hand, require solving a linear system. Explicit schemeg tia& advantage of being computationally
cheaper than implicit schemes because, unlike impliciése¥s, they do not require solving banded
diagonal systems. However, for a given order of accuracpliait schemes are globally more accu-
rate and the stencil is shorter than for explicit schemess iBha clear advantage when boundaries
are involved. In addition, as will be shown, remapping schelvased on implicit estimates of edge
values are less diffusive and have better dispersion ptiegef-or the sake of clarity, the following
discussion deals with uniform grids. The equivalent exgigess for nonuniform grids are provided
in the Appendix.

2.3.1 Explicit schemes

All explicit schemes are based on fitting (in a finite volumass a polynomial through the
data and evaluating it at the location of an edge to obtainstimate of the edge value. When
evaluated pointwise, a fitting polynomial of degree- 1, based on data in cells, provides an
nth-order accurate estimate of the edge value. It is assumedhialegrees of cell-centered and
edge-centered polynomials are even and odd, respectivajyre 3). Edge-centered polynomials
are unique to each edge and therefore provide a unique ¢stforahe edge value. Cell-centered
polynomials are unique to each cell and provide the left aghtredge values for this cell. In
this case, neighboring estimates may be different so thatlifferent edge value estimates may be
associated with a given edge, giving rise to a piecewiseodiftuous reconstruction.



Fitting in a finite volume sense means that a polynomjabf even degree: and centered on
cell k satisfies the following relationships

hi/"+§Fk(x)dx:aj for j=k— . ..j+o @)
JJa;

2 2’

[N

while a polynomiaIF,H% of odd degreen and centered on edge + % satisfies the following
relationships

2

1 [%i+3 n
7/ Y @ de=a, for j=k— " . i+l (8)
hj z 1 2 2

i—3

where the underline and overline indicate rounding downwgmdespectively, to the closest integer.
As inspired by [7], edge-value estimates are provided fdr 5en which case we have; =

(T andug = Ujy1.

Third-order estimates on uniform grids are given by

1
uj_1 = 5 (21%;1 + 5, —’ﬁj+1),
’ ©
ujpy = g (S8io1+ 505 +2854),
and will be referred to aBs estimates.
Fourth-order estimates on uniform grids are given by
1 N _ _ _
uj_1 = - (—Uj72+7’u]'71 + Tu; —Uj+1),
; (10)
Uipy = 75 (TU-1 T+ Ty — Uji2)
and will be referred to as, estimates.
Fifth-order estimates on uniform grids are given by
1
uj_% = @ (731_1,]‘_2 + 27ﬁj_1 + 471_1,j — 13ﬂj+1 + 2ﬂj+2) ,
| (12)
ujpl = @ (2ﬂj_2 — 13’1_Lj_1 + 47ﬁj + 27ﬂj+1 — 3ﬁj+2) s
and will be referred to aB; estimates.
Sixth-order estimates on uniform grids are given by
1
uj_% = % (ﬂj_g, — 8ﬂj_2 + 37ﬂj_1 + 37ﬂj — 8ﬂj+1 + ﬂj+2) R
| (12)
Ujpl = 50 (ﬂj_g — 8tj_q1 + 37U + 3TUj41 — SUjqo + ﬂj+3) ,

and will be referred to aBg estimates.
Note that averaging the discontinuolig and hs estimates lead to thk, and hg estimates,
respectively.



2.3.2 Implicit schemes

Limiting ourselves to tridiagonal systems for computaéibefficiency, a general expression for
implicit (or compact) schemes on nonuniform grids, relgteédge values to cell averages, is given
by

au;_1 + Ujpl + ﬂuj+% = alij_1 + bl + clij41 + diij42, (13)
[8]. Note that, in Eqg. (13), pointwise values appear in tfehand side while cell averages appear
in the right-hand side. The unknown coefficients anda, b, ¢, d are determined via a Taylor
expansion of, about;j + % as presented by [8]. The desired order of accuracy is atidwy having
terms of lower matching orders of accuracy cancel out, wiiields equations to be satisfied by the
unknown coefficients. In the particular case of uniform grifig. (13) is symmetric abou5+% SO
thata = 3,a = d andb = c.

In principle, odd-order accurate edge-value estimatesdcoe calculated but it would imply
considering asymmetric stencils. For example, a thircepastimate can be obtained by computing
a, # anda while b = ¢ = d = 0. The unknowns would then be determined by enforcing the
zeroth-, first- and second-order terms to cancel out in thydof@xpansion. However, asymmetric
estimates for the edge values should not be used since theyq® asymmetric reconstructions even
for symmetric data.

The coefficientsy, 5 anda, b, ¢, d are given in Table 1 for uniform grids. Implicit edge-value
estimates will be referred to aa,,, wheren is the order of accuracy.

2.4 Edge-slope estimates

Similarly to edge values, estimates for edge slopes may $edban explicit or implicit schemes.
Uniform grids are assumed for the sake of clarity in the folleg discussion.

2.4.1 Explicit schemes

Explicit edge-slope estimatesof* —order accuracy are calculated by first determining the ttin
polynomial of degree:. The polynomial is then differentiated and the resultindypomial (of
degreen — 1) is evaluated pointwise to yield a slope estimate. The eg@mare continuous, even
when using cell-centered fitting polynomials.

Fourth-order estimates on uniform grids are given by

1 o _ _
Wiy = gop 15 (@ = 1) = (@40 — U-2)], "

Uipy = op 10 (@ — ) = (@42 — -1)],

and will be referred to as, estimates.

Fifth-order estimates on uniform grids are given by

1

Uiy = Tgon 240 (@ = 45-1) = 25 (50 — Uj-2) + 2 (G542 — U5-3)], 15
1 _ _ _ _ _ _

Uivs = Tgon 240 (@1 = @5) = 25 (10 — Uj-1) + 2 (G543 — 45-2)],

and will be referred to aB; estimates.



2.4.2 Implicit schemes

Again, limiting ourselves to tridiagonal systems for cortgiional efficiency, a general expression
for implicit (or compact) schemes on nonuniform grids, tielg edge slopes to cell averages, is given
by

/
au .
i=3

tul g+ Bu s = alljoy + bl + clijyn + diljigs. (16)
The unknown coefficients, 5 anda, b, ¢, d are determined via a Taylor expansiornucdbout; + %
The desired order of accuracy is attained by having term&wét matching orders of accuracy
cancel out, which yields equations to be satisfied by the owkncoefficients. In the particular
case of uniform grids, Eq. (16) is symmetric ab@yl;r% so thata = (3, a = —d andb = —c.
Note also that, because of this symmetry, implicit schenresraform grids produce edge-slope
estimates that are automatically one order of accuracyehititan their equivalent on nonuniform
grids. Hence, for example, by designing a third-order saéon nonuniform grids, it becomes
automatically fourth-order accurate on uniform grids. S’gain in accuracy does not happen when
estimating edge values.

The coefficientsy, 5 anda, b, ¢, d are given in Table 2 for uniform grids. Implicit edge-slope
estimates will be referred to a#,,, wheren is theactual order of accuracy. Sa; may change
depending on whether uniform or nonuniform grids are atyusded, although the same scheme is
considered.

2.5 Reconstruction accuracy and convergence analysis

We now compareePM and PQM solely on the basis of unlimited reconstruction perfornganc
Remapping errors will be analyzed later. We aim at asses$singedge-value and edge-slope esti-
mates affect the global error of the scheme and its order@iracy. The global error is a measure
(for a given norm) of the error on a given grid while the orddéraccuracy is the rate at which
this global error decreases as the grid size decreases. nBzdkures must be considered. Indeed,
schemes using,, andih,, estimates for the edge values will have the same order ofracgiut
will most likely have different error norms on a given grid.

A ppMmscheme denoted 3PM h,, means thab,, edge-value estimates are used for reconstruc-
tion. Similarly, apQMscheme denoted QM h,, / h,,, means thak,, edge-value and,,, edge-slope
estimates are used for the reconstruction. Generally,dosistency, we require that the order of ac-
curacy for the edge-value estimates be one unit higher thanfor the edge-slope estimates (i.e.,
n=m+1).

To avoid having to deal with boundaries, periodic domairikfisst be considered. The treatment
of boundaries is covered in Section 4. A periodic functif(x) is given as initial data on the
nondimensional domaifi), 1]. Initial cell averages are defined as follows:

1 [%i+3
;= h—/ f(x) de.
i,

[V

Reconstruction accuracy is evaluated by calculatingth@orm of the erroe:

lellz, = [ / (@) - B@)P? dw] -

whereR is the global reconstructed profile, made up of piecewisgrmwhialsR; defined on each
cell. The polynomialsk; are defined by (3)-(4) and)-(6) for PPM and PQM, respectively. Ex-
amples of reconstructions usimgpm and PQM are shown in Figure 4. For both methods, implicit



edge-value estimates produce more accurate results thareiplicit equivalent for a given order
of accuracy. In addition, at low resolutiorpm ih, yields a reconstruction that is more accurate
than both high-order explickQMm hs5/hy andPQM hg/hs schemes. Therefore, to be a successful
alternative tapPMwith implicit edge-value estimates at lower resolutior@m must also make use
of implicit edge-value estimates.

Now, since the orders of accuracy pPM andPQM are three and five, respectively, we expect
all PQMm schemes to to be more accurate thraM schemes at higher resolutions. This is shown
via a convergence analysis experiment where graduallye@fimiform and nonuniform grids are
used for reconstructing the Gaussian profile on a periodicado (Figure 5). Nonuniform grids are
simply modified uniform grids for which the edge locatione perturbed by a uniformly-distributed
number in[—h/4, h/4], whereh is the uniform grid size. For uniform grids, the error nornis a
reported against while for nonuniform random grids, error norms are reporgdinst the average
grid sizeh.

As shown in Figure 5, using at least third-order accurateceddue estimates farPM ensures
that the scheme is third-order accurate. Similarly, usiohgeevalue and edge-slope estimates that are
at least fifth-order and fourth-order accurate, respelstiensures thabQm is fifth-order accurate.
Note, however, that the empirical reconstruction orderaaigiacy forPQM hg /hs andPQMihg /ihs
is six. Finally, as expected, the order of accuracyQf ihy /ihs reduces to four.

In agreement with results shown in Figure 4, not only do icipBchemes perform better than
their explicit equivalent overall, they especially produmore accurate reconstructions at lower
resolutions (see inset in Figure 5a), which are resolutibasusually matter in most applications. At
low resolution,PPMih, is more accurate than all explicitom schemes butQM ihy /ihs andPQM
ihg/ihs perform better. Nonetheless, as already mentiored) ih,/ih; is fourth-order accurate,
which turns out to be a waste of the potentially higher ordexazuracy ofPQMm.

2.6 Limiting PQM

We now take up the task of limiting ti/eQM reconstruction scheme in order to obtain piecewise
guartics that are monotonic within each cell and boundediédxeh neighboring cell averages. This
ensures that theQm-based remapping scheme will neither create new extremamplify existing
ones.

The algorithm for limitingpQm operates in two phases. The first phase ensures that the edge
values are bounded by neighboring cell averages and thatie slopes are consistent by being of
the same sign as that of the limitedm slope. Once the edge values and slopes are bounded and
consistent, respectively, the second phase ensures thahtiuing quartic is monotonic within the
cell. This requires checking whether inflexion points exighin the cell and, if so, whether the
slope of the quartic at the inflexion points is of the same aigthat of the limitegrLM slope.

Before delving into the detailed algorithm, preliminansuéts regarding inflexion points are
recalled.

Lemma 1l Any quarticQ(¢), as defined by (5)-(6) fof € [0, 1], has at most two inflexion points
in [0, 1].

Proof. Inflexion points are real roots of the second derivative&)df), which is a parabola that
has at most two real roots. QED.



Lemma 2 If the edge slopes are positive (negative) and if the devigalf the quartial(¢) at any
inflexion point lying within[0, 1] is positive (negative)(£) monotonically increases (decreases) in
[0, 1].

Proof (for the positive case). Any inflexion point is an extremum of the derivative @(¢). If all
extrema of the derivative ifd, 1] are positive, the derivative @} (&) is everywhere positive if0, 1]
and@(&) monotonically increases i), 1]. QED.

Corollary 1  If the edge slopes are positive){ > 0 andu/, > 0) and if the quartiaQ(¢) has no
inflexion point lying within(0, 1), Q(&) monotonically increases i, 1].

Proof. This follows from Lemma 2. Note that inflexion points lying either edge (and only
there) do not preclude the quartic to be monotonic.

Since the limited>LM slope is resorted to throughout the algorithm, we now giseléfinition for
nonuniform grids. Given a cell of width and left and right neighboring cells of widttsg, and
hg, respectively, the limiteéLm slopeo is defined as

o signoc) min (|oL|, |or|, loc|) if TLOR > 0, (17)
0 otherwise

whereo, andog are the left and right one-sided slopes, respectively,cant the centered slope.
The sign function is equal to 1 for positive arguments, -1rfegative arguments and O otherwise.
The one-sided and centered slopes are defined as

o — ﬂc—ﬂLth-l-hc _ 27740—121:
L hr + he he he
on = UR — Uc y hc + hgr _ 2uR—uc’ (18)
hc + hr hc he
Ur — Uy,
oc =

P L
hr + 2hc + hg’

whereu, uc andug are the cell averages associated with the left, center ghd cells, respec-
tively. Note that the slopes defined by Eq. (18) are the ti@uid van Leer limited> L™ slopes [e.qg.,
9], written for nonuniform grids. An illustration is provédl in Figure 6.

Both phases of the algorithm are now described in detail. $8ame that edge valueg andupr
and edge slopes; andu’, are given.

2.6.1 Edge values boundedness and edge slopes consistency

Prior to any verification of boundedness and consistencgl lextrema are flattened by equating
the edge values to the cell average and the edge slopes toAeextremum is detected when the
left and right one-sided slopes have different signs, whadtording to Eq. (17), translates into
o = 0. If no extremum is detected, the boundedness of edge vawbecked.



An edge value is limited only when it is unbounded, that isewthi lies out of the range defined by
the neighboring cell averages. If the calculated edge vialbeunded, we assume that the estimate
is accurate and need not be modified. Hence, if the left edge i®unbounded, that is if

(’ﬁL — ’LLL)(UL — ﬂc) <0,

then the new estimate reads:
_ . . (he _
ur, « Uc — sign(o) min 7|0|,|uL —uc| | . (29)
Similarly, if the right edge value is unbounded, that is if

(ur —ugr)(ur —uc) <0,

then the new estimate reads:
~ . . (hc _
uR < ¢ + sign(o) min 7|a|,|uR—uC| . (20)

An illustration of how these limiters operate is providedrigure 7. A final check is conducted to
make sure that discontinuous edge values are monotoniy &daye. If edge values are discontinu-
ous and nonmonotonic, they are both replaced by their agerag

Finally, consistency checks are performed on edges slémexonsistency, the edge slopes must
be of the same sign as that of the limitedv slopec. Each slope having the wrong sign is set to
be equal tar. Among other choices, such as setting the slope to zero betorte-sided slope, this
was empirically found to produce more accurate results.

Three cases need be considered: (1) The slopes are of thesggmevhich is the sign of.
No modification is carried out; (2) The slopes are of the saige, svhich is opposite to that of
o. Both slopes are equated 49 (3) The left and right edge slopes may be of different sighisT
usually happens for edge slopes located on either side ofteangum, which is then taken care of
at the beginning of the algorithm through extremum detectih may also happen, however, for
monotonic data. In that case, the slope having the wrongisigguated ta.

2.6.2 Monotonicity enforcement

At this point of the algorithm, extrema are flattened, eddaesare bounded and edge slopes are
consistent with the limite@LM slopeo. Yet, this does not guarantee piecewise monotonicity (see
examples thereof in Figure 8), which is now addressed.

Monotonicity is guaranteed whenevéx(¢) has no inflexion point (see Corollary 1). When
Q (&) has any inflexion point, monotonicity is guaranteed prodgitiat the derivative of)(¢) at the
location of inflexion points be of the same sign as that of itinééd PLM slope (Lemma 2). That is,
the inflexion points must be consistent with them slope (see, e.g., Figure 8d that features a quartic
with two consistent inflexion points). Considering the lb@as of inflexion points rather than the
locations of extrema is simpler because it involves pai@bohther than cubics, the former being
much more amenable to analytical manipulations.

The algorithm that enforces monotonicity functions asdie. We first check for the existence
of inflexion points by computing the roots of the second dgive of Q(¢), Q? (¢). If none lies
n [0, 1], the quartic is monotonic. If there is at least one inflexiainp the associated slope is

10



calculated at the location of each one of these inflexiontp@nd compared with the limiteelm
slope. If the slopes are consiste@X,£) is monotonic. If the slopes are not consistent, we enforce
Q(¢) to have two inflexion points collapse — i.€(? (¢) has one double root — on either edge, the
choice of which depends on the relative values of the onedstdm slopes. The decision is made
as follows:
lor] <|or| = collapse inflexion points on left edge
lor| < |or| = collapse inflexion points on right edge

where the slopes are defined by Eq. (18).

Mathematical convenience is one of the motives behind tloécelhof having inflexion points
collapse onto either one of the edges. The other reasontistfaartic having this property, as
dictated by (21), has a single-signed curvature. The sigheoturvature automatically produces a
quartic that is shaped like the underlying three-cell datgthe left, center and right cell averages).
This is so because the sign of the curvature is simultangaasitrolled by (a) whether the under-
lying three-cell data set increases or decreases and (kevitifgexion points are located, which,
according to (21), is also where the smallest one-sieled slope is located. For example, let us
assume that the data set increases and that the smallesiiedeslope is the left one. Then, the only
possibility is a positive curvature, which means that thevdéve increases from its minimum on
the left (where both inflexion points are located). This,umt{ means that the reconstructed quartic
has a steeper slope on the right, which is consistent wittiattethat the right one-sided slope is
larger too (this particular case is illustrated in Figure 9)

The second derivative of the quarti@(® (¢), can be written as

QP (€) = by + b1& + bet?, (22)

where the coefficientsy, b; andb, are related to the original coefficients of the quaéit) — see
Egs (5) and (6) — as follows:

(21)

bo = 2ay = 60u—24ur — 36ur, + 3 (uy — 3u}),
by = 6az = —360u+ 36u; — 24uy + 168ur + 192ur, (23)
by = 12a4 = 360u+ 30 (uy —ulf)— 180 (ur + ugr) .
Let¢; andé, denote the roots af(® (¢). Those roots satisfy the following relationships:
by
51 + 52 — - Ea
bo
§162 =
When both roots are located on the left edgée, at0, we have
+ = 0 = b =0,
&1+ & 1 (24)
6152 = 0 = b() =0.
When the roots are located on the right edgé, at1, we have
+ = 2 = b =—2b,
&1+ & 1 2 (25)
§162 = 1 = by=ba.

Once a decision is made as to where both inflexion points dhoeillocated, Eqs (24) and (25),
together with Eq. (23), give us relationships that must bisféed by the four modifiable parameters:
the edge values and edge slopes. Because the edge valuea higler impact on the global
accuracy of the scheme, we prefer to first modify the edgeesl@md leave the edge values intact.
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Inflexion points on the left Let us first treat the case of both inflexion points on the Ief$ing
Eqgs (23) and (24), the edge slopes must be adjusted to

1
up = g(loﬂf2uR78uL), (26)
up = —10u+ 6ug + 4ur. 27

It may happen, however, that the above solution providesige slope that is inconsistent with the
limited PLM slopeo. When this happens, the quartic curvature is still singdgad but it is not
monotonic because the derivative@f¢) reaches zero somewhere. This means that, given the edge
values, there are no consistent edge slopes that producaatoncc quartic. Note that, because the
quartic curvature is single-signed, at most one edge sloplkel de inconsistent. When this situation
turns up, one of the edge values must be modified. The indensisdge slope is first made equal

to zero while the opposite edge slope and edge value aretedjtes build a new quartic that still
possesses both inflexion points on the left. So, if the lefieeslope is inconsistent, it is set to zero
and the right edge value and slope are adjusted. If the riddp slope is inconsistent, it is set to
zero while the left edge value and slope are adjusted. Madtieafly, if u; o < 0 then

up, = 0,
ur = bu—4uy, (28)
up = 20(u—ur),
and ifuo < 0 then
up = 0,
1.
uL = 3 (54 — 3ug), (29)
10
up = 5 (—u+ug).

The adjustments (28) and (29), if carried out, are definititbat the associated quartic is guaranteed
to be monotonic and bounded by neighboring cell averagesiobtmicity directly follows from the
fact that both edge slopes are consistent and that the aueviat single-signed. Boundedness is
ensured by the property that the adjusted edge values amséhees bounded by their previous
values and the cell average. This can be shown as followshddfitoss of generality, we assume
that the underlying data set is increasing. We further asstinat both edge values are bounded and
that the edge slopes have been adjusted according to (2Bje(produce a quartic with inflexion
points on the left. Now, we make the final assumption that #fieddge slope is negative and,
therefore, inconsistent (because the set of cell averagegreasing). Using (26), the right edge
value is equal to

UR=5ITL—4UL—§UIL > bu — 4uy, (30)

the last inequality holding true because the left edge siopegative. Because the left edge slope
is inconsistent and set to zero, the right edge value is stju® 5a — 4ur, following (28). As
expressed by the inequality (30), this new edge value islemiflan the previous value, before
adjustment. Since, < 4, it also remains bounded below by the cell average. Heneeadfusted
right edge value remains bounded by neighboring cell aesaghe same reasoning applies for the
case where the right edge slope is inconsistent and thedgé ealue must be adjusted (see Figure
10 for illustrations of both cases).

12



Inflexion points on the right The case where both inflexion points collapse onto the riggees
treated in a similar fashion. Using Egs (23) and (25) , we firat the edge slopes must be adjusted
to

up, = 104 — dup — 6uy, (31)
1
u'R = 3 (—10u + 8up + 2uy,) . (32)

Again, one of these slopes could be inconsistent with regpebe limitedPLM slopes. When this
occurs, the inconsistent edge slope is set to zero while pesite edge slope and edge value are
adjusted to produce a quartic that still has both inflexiomsoon the right. Ifu}, o < 0 then

up, = 0,
|

ur = 5 (5u—3ur), (33)
10

/ —

up = — (e—uL),
3

and ifu’zo < 0 then

up = 0,

ur, = 5a—dupg, (34)

up = 20(—u+ug).

In both cases, (33) and (34) provide adjusted edge valuesthdounded by the cell average and
the previous value, before adjustment. Hence, the quastaimed is both monotonic and bounded.

2.6.3 Overall algorithm
The overall algorithm is now summarized.

1. Check whether the current cell average is an extremuna, fiaten the quartic (a piecewise
constant is used).

2. Check whether the edge values are bounded by the neiglgba®il averages. If not, use (19)
and (20) to bound the left and right edge values, respewgtivel

3. Check whether the edge slopes are consistent, that ise &fame sign as that of the limited
PLM slopeo. If not, substitutes for any inconsistent edge slope.

4. Check for the existence of inflexion points|in 1]. The quartic is bounded and monotonic
(i.e., definitive) in the following cases: (a) no inflexionipi (b) one consistent inflexion point
and (c) two consistent inflexion points. On the other hanohd inflexion point is inconsistent
(see e.g., Figure 8a-c), we enforce monotonicity by haviott inflexion points collapse on
either one of the edges, the choice of which depends on tlwevial criteria:

(i) if the left one-sidedPLM slope has a smaller absolute magnitude than that of the right
one ¢ <= og), both inflexion points are shifted to the left edge. This e by
modifying the edge slopes via Eqs (26)-(27) and, if requil®dreadjusting one if the
edge values via Eq. (28) or Eq. (29).

(i) otherwise, both inflexion points are shifted to the tigllge. Edge slopes are modified
using Egs (31)-(32) and, if necessary, one of the edge vauesdjusted by using Eq.
(33) or Eq. (34).
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The first phase of the algorithm comprises steps (1)-(3) aodigies bounded edge values and
consistent edge slopes. The second phase of the algoritbpn(4, modifies the edge slopes and,
if necessary, the edge values in order to obtain a monotamctig within each cell. In addition
to edge-value boundedness and edge-slope consisterscyadhiotonicity constraint is a sufficient
condition for having a remapping scheme that neither csaa® extrema nor amplify existing ones.
Yet, this condition is not necessary since a nonmonotonatiuthat is nevertheless everywhere
bounded by neighboring cell averages will also yield a repivagp scheme having these properties.
Nonetheless, quartics that are nonmonotonic may lead ificialt sSteepening, a property that is
usually beneficial to resolve extrema but may unrealidticsteepen smooth profiles. Illustrations
of the second phase of the algorithm are shown in Figure 18 fif$t phase is more straightforward
and was partly presented in Figure 7.

3 Advection as a particular case of remapping

Let us assume that the following one-dimensional adve&ration is to be solved on the peri-
odic domain0, 1]:
du  Ou
e G 35
ot + Ox 0 (35)

where the scalat is the advected quantity and the advective velocity is uty a fixed grid, finite-
volume advection schemes typically rely on fluxes acrodsrtelfaces. Those fluxes are computed
based on cellwise reconstructions. For CFL numbers grélaser one, the computation of fluxes
becomes less straightforward since they not only involyacaht cells but also cells located further
away. Therefore, a more natural way of thinking of advectfas a remapping scheme. At a given
time step, the global profile is reconstructed by means afguigse polynomials, shifted forwards
(for positive advection speed) over a distance covered etone step and overlaid on the grid to
compute the new cell averages. Equivalently, the grid cathbeght of being shifted backwards.
This easily provides a way to advect quantities on nonunifgrids for CFL numbers greater than
unity.

In this section, a dispersion analysis of unlimited remagEchemes is presented for the solu-
tion to Eq. (35) on uniform grids and CFL numbers smaller thaity. We then compare the limited
schemes in their ability to accurately solve Eq. (35) onamif and nonuniform grids for various
initial conditions on periodic domains.

3.1 Dispersion analysis

Let us assume the grid to be uniform of cell sizeThe time step is denoted kyt and the CFL
number is denoted by = At/h. A flux-form, explicit, discrete version of Eq. (35) is

—n+l _ -n n n
uj = U TG~ g (36)

whereq 1 andq™ i are the fluxes across edgﬁs andg+ , respectively, that is the incoming
and outgomg quxes respectively. The fluxes are computéallass

1
a. = /IHRj—l(ﬁ)df,

1

Nl=
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whereR; is the local polynomial reconstruction in cgll The local polynomialk; depends on the
edge-value estimates (and also the edge-slope estimateseénofPQm), which, in turn, depend
on cell averages. Hence, the fluxes can be expressed dyglicterms of cell averages by using
formulae presented in Sections 2.3 and 2.4.

Assuming that the solution’ takes on the form of a single Fourier mode, we can write

u} = exp [i (kjh — wnAt)],

which can be used in Eq. (36) to obtain the discrete dispergtation betweew At andxh at a
given CFL numbep. Since all terms in the left-hand side of Eq. (36) are considat the same
time step, the time component of the Fourier mode can berfadtiout, which gives rise to

exp (*Z.WAt) =1+ Qin — Qout,

or
wAt =iln (1 + Qin — Qout) , (37)

whereln is the natural logarithm an@;, andQ,: are the incoming and outgoing fluxes, respectively,
expressed in terms of exponentials that translate theadmlpendence of the fluxes. The fluxes
depend on the reconstruction polynomial and on the edgeesand edge slopes. The algebra is
tedious and Eq. (37) is solved usimgTLAB . The real part of the solution is indicative of the phase
error while the imaginary part gives information on the amiof numerical diffusion introduced
by the discretization. Results are shown in Figure 11 for & @Fmber of 0.25.

The best candidates areM ihy andPQM ¢h6/ih6, which introduce less numerical diffusion
and exhibit better phase propertie=Qm ih4/ih4 also has good properties but is only fourth-order
accurate, which, as already mentioned, is considered fuagtehat PQm should at least be fifth-
order accurate.

3.2 Numerical experiments

We now perform traditional advection experiments in a pdic@omain, starting with the follow-
ing initial condition, inspired by [5] :

(z —0.125) .
_ A f . <zx<0.1
exp l T it 0.075 <z < 0.175,
1 it 0.325 <z < 0.425,
F=191-20/z - 0.625| if 0575 <2 < 0.675, (38)

1/2
{1 400 (z — 0.875)2} it 0.825 <z < 0.925,

0 otherwise

The unlimited versions afPMandPQm are first used and the results are presented in Figure 12. The
limited versions are then considered to run the advectistoie uniform and nonuniform grids, with
results shown in Figures 13 and 14, respectively. In allgatbe grid has 160 cells and results are
presented after 10 revolutions. All experiments show Hw schemes outperforrmPm schemes,
which is especially visible for the limited cases.

At low resolutions, the dispersion analysis suggestsrhatih, would outperformPQM hs /hy
by being less diffusive, especially to resolve higher wawears (Figure 11). This property is con-
firmed in Figure 15. However, the advantagereiM ihy over PQM hs/hy is lost when the limited
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versions of these schemes are used because both scherdesngitr results. In the limited cases,
all PQm advection schemes perform better, all resolutions consite

Similarly to thepQmlimiter, theppmlimiter also operates in two phases. The first one guarantees
boundedness of edge values using Eqgs (19) and (20). Thedspbase enforces monotonicity by
adjusting one of the edge values (see [4] for details on thése) to shift the extremum, if any, onto
an edge. Finally, extrema in the data set are representeibgvpise constants.

3.3 Convergence analysis

A convergence analysis is carried out on uniform grids fer &ldvection of a Gaussian in a pe-
riodic domain. Results are shown in Figure 16 for a CFL nundfér.25 and after one revolution.
The convergence rates are established with respect to tlelian norm, defined by

1/2

N
Ile]leuet = Z | — @, exact|” ; (39)

j=1

wheret; exacr IS the exact average in cej] as computed using the exact analytical solution. Note
that the Euclidian norm is a better measure than/th@orm for computing advection errors since
the objective is to evaluate how cell averages are transpdy the advection scheme. In this
respect, reconstruction is merely a means to achieve thgsile.

For unlimited advection schemes, convergence rates ayesirailar to that obtained for the un-
limited reconstruction schemes. In particular, it is notieat thePQM hg/hs andihg/ihg SChemes
are both sixth-order accurate. At low resolutie@M ihy /ih, outperformsPQM hs/hy. This situa-
tion is reversed at higher resolution as the fourth-ordeueate scheme is outpaced by the fifth-order
accurate scheme. As was already the case for the recomsitreaonvergence analysis, convergence
rates on nonuniform grids are roughly the same and are natrsh@ll limited schemes exhibit
second-order accuracy because the global error is donditgté¢he first-order accuracy in the res-
olution of the Gaussian extremum. Since the grid size idédiby two at every step of the con-
vergence analysis, this local error decreases by four,wyiglds second-order accuracy. However,
this should not conceal the fact that, on a given geidv schemes are globally more accurate (see
Figures 13 - 15).

4 Treatment of boundaries

We now turn our attention on estimating the edge values amkslat the boundaries. We limit
our discussion to the following schem@&®Mhy, PPMihy, PQMihy/ihy andPQMihg/ihs, because
they turn out to be the most effective. The concepts preddamtee are readily applicable to other
schemes.

For PPM hy4, edge values are estimated by using fourth-order polynisrsiganning four cells.
Thus, this scheme is not directly applicable to the first astitivo edges for which another approach
must be considered. One possibility is to gradually deeréas order of accuracy of these estimates,
down to a first-order estimate at the boundary where the edfgiee\is taken to be equal to the
boundary cell average. Another approach, which we advotsate resort to one-sided fourth-order
polynomials so that the same order of accuracy is presehvedghout the domain. Hence, the first
and last two edge values are estimated by using the polyhepaaning the first and last four cells,
respectively. On uniform grids, the first and second onegifburth-order edge-value estimates are
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given by

1
1 (40)
u2 = 5 (361 + 13ag — 5z + U] -
Similarly, the last two edge-value estimates are given Bgyaing the grid comprise¥ cells)
1
uN = —[un_3—bun_2+ 13un_1 + 3un],
12
1 (41)
UN+1 = IE [—3an—_3+ 13Un_o — 23Un_1 + 25UnN] .

We note that, on nonuniform grids, these edge values amnatsiil by first computing the coeffi-
cients of the polynomials spanning the first and last fouscé@lhese polynomials are then evaluated
at the locations of the first and last three edges, respégtiveobtain the edge-value estimates. This
approach is more computationally efficient than resortm@ tlosed-form expression such as Eq.
(50) because once the polynomial is computed, it can be ised times. The coefficients of the
polynomial are found by solving a linear system based onélaionships (8).

In addition to being more accurate and having better dispeoperties tharPMhy, PPMihy
better handles boundaries because it uses a shorter stemgiarticular, the implicit relationship
(13) — witha = d = 0 — can be written for both the second and second to last edgely. tie
boundary edge values need to be prescribed in order forittiagonal system to be solvable. This
is done by using the one-sided, fourth-order explicit eatesu; anduy41, as given by (40) and
(41). Since all edge-value estimates are linked, the acgwhthe boundary edge-value estimates
has an influence on all other interior estimates. Therefibris, important to use a fourth-order
scheme to estimate the boundary edge values (even thoughdbeacy of the edge-value estimates
at the boundaries may be subsequently reduced by the l)miter

The boundary treatment farQm ihy/ihs is not different from that considered fePm ihy.

In addition to prescribing the boundary edge values, we ¢ to prescribe the boundary edge
slopes. These boundary conditions are enforced by usingptine fourth-order accurate polynomial
spanning four cells. The boundary edge value is computedvaluating the polynomial at the
boundary while the slope is computed by evaluating the divie of the polynomial. For uniform
grids, third-order boundary edge slopes are given by

1
u’l = —— [—11la; + 45u2 — 69us + 35uy4],
1§h (42)
U/N+1 = o [—35@1\/,3 +69un_9 —4bun_1 + 111_LN] .

ThePQM ihg/ihs scheme requires a little more work. Because the sixth-drdplicit scheme
(13) spans four cells, it can only be written for edges 3te- 1 and sixth-order estimates must be
provided for the first and last two edge values. We proposeséoane-sided, sixth-order implicit
schemes for the second and second to last edges and sithegmlicit estimates at the boundaries
to close the tridiagonal system. A left-sided implicit sofeecan be written as

O[U,j7% —+ U‘j+% =+ ﬂuj+% = aﬂj + b’l_l,j+1 + C’l_l,j+2 + d'L_Lj+3, (43)
which is an expression between four cell averages and tke teftmost edge values of the stencil.
Unlike Eq. (13), the above relationship can be written fag #econd edge value. Similarly, a
right-sided implicit scheme is given by

auj_; + uj_i_% + ﬂuj_,’_% = al_Lj_g + bﬂj_l —|— C’aj + dﬂj+1 (44)

2
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and expresses four cell averages in terms of the rightmgst ealues of the stencil. It can be utilized
with respect to the second to last edge value. The coeffiert, a, b, c andd of Egs (43) and (44)
are given in Table 3 for uniform grids and in the Appendix fananiform grids via the solutions
to linear systems. As for the edge values, writing implieiationships for the second and second
to last edge slopes requires to resort to one-sided formulaieh are now presented. A left-sided
implicit scheme can be written as

aui_y tuly s+ Bul s = atly + bl + clijys + dijys, (45)

which is an expression between four cell averages and tkee thftmost edge slopes of the stencil.
Similarly, a right-sided implicit scheme is given by

auy_y Ful s+ Puly s = alljp + bl + clj + dilj (46)
and expresses four cell averages in terms of the rightma# sldpes of the stencil. The coefficients
«, B, a, b, c andd of Egs (45) and (46) are given in Table 4 for uniform grids amd¢hie Appendix

for nonuniform grids via the solutions to linear systemse Tifidiagonal systems for the edge values
and slopes are closed by prescribing the following sixitheoboundary edge values:

1
Uy = [1764T; — 25561 + 284413 — 19561y + 74405 — 1204g] ,
1
UN4+1 = % [—12OﬂN75 + T4dupn_4 — 1956Un_3 + 2844un_o — 2556Un_1 + 176412]\[] s
(47)
and fifth-order boundary edge slopes:
1
uy = [—3248uy + 928012 — 1178013 + 854014 — 3340u5 + 5481 ,
1
Uny = 7500 [—548un_5 + 3340uN_4 — 8540Uy_3 + 11780u o — 9280t —_1 + 3248uN] .

(48)
Expressions (47) and (48) are valid for uniform grids. Onundform grids, the coefficients of the
boundary polynomials are first computed. The polynomiatstaeir derivatives are then evaluated
at the boundary to give the boundary edge values and slopes.

The order of accuracy of the boundary conditions has a ndigilglg influence on the overall
quality of solutions to unlimited remapping experimentsairtlosed domain. In Figure 17, the
reconstructed profiles are shown after 1000 remapping sy&lach cycle comprises four steps: (i)
reconstruction on grid A, (ii) remapping onto grid B (diféert than grid A and for each cycle), (iii)
reconstruction on grid B and (iv) remapping back onto gridid\Figure 17, grid A is a 20-cell
uniform grid and grid B is an 18-cell nonuniform grid. For éaexperiment, the initial condition is
a set of cell averages based on the exact profile. At each,dgfidemation is lost when grids A and
B are different. The best schemes are those for which thssifothe smallest. The overall quality
of the solutions is impaired when low-order boundary candi are used. Low-order boundary
conditions consist in setting the boundary edge valueslégjttze boundary cell averages and setting
the boundary edge slopes equal to zero. This is equivaleottsidering a constant approximation at
the boundary. FopPM Ay, the second and second to last edge values are made equaihaseder
estimates using adjacent cell averages. As a sanity cheeésiverified that albPmschemes could
exactly (i.e., to machine accuracy) reproduce paraboldstlaat PQM ihy/ihs and PQM ihg/ihs
could exactly reproduce cubics and quartics, respectiMalyFigure 18, a convergence analysis is
conducted for which the remapping experiments, as destabeve, are carried out on gradually
finer grids. Using low-order boundary conditions reduces aider of accuracy of all schemes to
2.5 whereas high-order boundary conditions allow to pres#re nominal orders of accuracy.
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5 Computational cost

The relative computational costs BPM and PQM schemes are now briefly investigated on the
basis of remapping experiments in closed domains, as thesldrn Figure 17b (high-order boundary
conditions are used). The errors and elapsed computationes are reported in Table 5 for un-
limited and limited remapping experiments consisting 0@ cycles between a uniform 100-cell
grid and a nonuniform 90-cell grid. Both the unlimited anaitied versions oPQM schemes are
more cost-effective than theirPm counterparts. In particular, the error incurred by the naitiéd
PQM ihg/ihs scheme is decreased by more than three orders of magnitatgaced withPPMm h4
for only a 30% extra cost. The same tendency occurs for thigelihversions of these schemes,
although not as dramatically. Whereas the unlimitea 2, scheme is cheaper than the unlimited
PPMihy sScheme, the opposite is true for the limited versions ofdtsehemes. That is, the limited
PPMihy scheme turns out to be cheaper than the limitesh 2, scheme (see Table 5). This origi-
nates from the fact that, edge-value estimates are more accurate thagstimates and the limiter
does not need to be activated as often with the former, makéng 1, relatively less expensive. For
the same reason, limite’lgM schemes are not as expensive as unlimiea schemes, in relative
terms.

Given a target error, Table 6 shows the grid resolution néeahel computational times incurred
to attain that error for different unlimited and limited grhes. The remapping experiment is the
same as that described in Figure 17b. Note that differegétarrors are considered for the unlimited
and limited cases. For a given errerM h, is almost five times more expensive theQM ihg /ihs
for the unlimited versions of these schemes. The extra costats to 10% for the limited versions.

6 Conclusion

We have presented a hierarchy of one-dimensional highraataapping schemes and inves-
tigated their performance with respect to accuracy, cajemee rate and dispersion. The schemes
have also been compared based on traditional advectionieggs in periodic domains and remap-
ping experiments in closed domains. We have introduced ¢herQM scheme that is based on
fifth-order accurate piecewise quartics. A limiter for teiheme has been fully described that never
decreases the polynomial degree, except at the locatiorti@nea where piecewise constants are
used.PPM has also been revisited and compared wiim by using a series of high-order explicit
and implicit (i.e., compact) estimates for the edge valuessiopes, with significant improvements
gained when using implicit estimates.

All analyses have been carried out in one dimension becausaain focus is the improvement
of vertical coordinate systems in hybrid ocean models. Heweve believe that the material pre-
sented is also applicable to higher dimensions. In factudeofPPM advection schemes is not
uncommon [e.g., 14] and, in that respect, some of the impnevis presented in this paper could
be directly used in existing algorithms.

Based on the analysis of computational costs, it is fountrka ihg /ihs is by far the most
cost-effective scheme when it is unlimited and remains eglyantageous when the limiter is acti-
vated. It is also shown that all limiterlgm schemes perform significantly better than limiterim
schemes. Moreover, we note that the limitegiv scheme has room for improvement, and it would
certainly benefit from state-of-the-art monotonicitygeeving limiters that are currently used for
ppPMschemes [e.g., 17].
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A Estimates of edge values and slopes on nonuniform grids

Some estimates for edge values and slopes are now providadrianiform grids. Since not all
schemes are recommended, we limit ourselverta 3, PPMhy, PPMihy, PQMihy /ihs andPQM
thg/ihs.

A.1 Edge values
A.1.1 Explicit schemes
Third-order estimates are given by

(hl + hg) (hl’ljo + ho’al) (2h1 + hz) hoty — hohits
(ho+ h1) (ho +h1+h2) (b1 +ha) (ho + hy + ha)

Uj,

Nl=

49
- (ho + 2h1) haotiy — hihotig (ho + h1) (hgﬂl + hﬂ_LQ) ( )
Its (ho 4+ h1) (ho +h1 +ha) ' (hy + ha) (ho + hy + h)’
Whereﬂo = ’ﬁjfl, Uy = ﬁj, Uy = ’ﬁj+1 andho = hjfl, hy = hj, ho = hj+1.
Fourth-order estimates are given by
u = ! X
i—a T ho + h1 + ha + hs
(ho—Fhl) (h2+h3) _ B ( 1 1 )
h h
{ (h1 + h2) (Buha + Eghn) h0+h1+h2+h1+h2+h3 50
ha (he 4 hs) (@1 (ho + 2h1) — ohi] =
(h0+h1+h2) (h0+h1) 1 0 1 0/l
hi (ho + hy)

(h1 + ha + h3) (ha + h3) [tz (2hz + ha) - u3h2]}

wheretg = Uj—2, Ul = Uj—1, U2 = Uj, U3 = Ujt1 andhg = hj_g, hy = hj_l, hy = hj,

hs = hj11. The right-hand side edge valu%-%%, is simply obtained by translating the index to the
right by one unit.

A.1.2 Implicit schemes

The coefficients in Eq. (13) for the fourth-order estimatesgven by

o - o n
(ho + h1)?’
R
(ho + h1)?’
a = 0,
by - 2h$h%+2h%+3g°h1, (1)
(ho + h1)
. 2h%h3+2h§+3goh1’
(ho + h1)
d = 0,
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wherehy = hj, hi = h;qi. It turns out that computing the coefficients (51) has a cds6o
multiplications and 8 additions. Alternatively, we migistwell compute the coefficients by solving
the following linear system

1 1 -1 “17Ta 1
“ohe 2 he i || B | | 0
302 3h2 —h2 —h2 || b || o | (52)
Sandoand o ng —nd || e 0

which has a cost of 36 multiplications and 26 additions testie system, assuming that a standard
Gaussian elimination is used. This is in addition to the odstetting up the system. So, there is
no clear computational advantage in using the closed-foqpnessions. As the order of accuracy
increases, it becomes computationally cheaper to catcthat coefficients of the implicit scheme
by solving a linear system. In addition, algebraic manipates involved in the computation of
closed-form solutions become quickly intractable.

The coefficients in Eqg. (13) for the implicit sixth-order iesates are given by the solution to the
following linear system:

1 1 -1 -1 -1 -1 « —1
9k, 2hy —Ay hi  —hy -V, 3 0
3h2 3K Ay —h2 —h2 -Vi ||al| | 0 (53)
—4h? 4R3 —Ay P —h} -V, b | T | o |
5h41l 5h§l A5 —héll —h% —V{) C 0
—6h3 6h} —Ag hd —h3 -V || d 0
where .
hy — (ho + ha)
A, =AWy
k h() ’
_ (hz + hg)k - hé
vk: - hg ’

with ho = hj_l, hi = hj, hy = hj+1, hg = hj+2.
The coefficients in Eq. (43) for the left-sided, implicit gixorder estimates are given by the
solution to the following linear system:

1 1 -1 -1 -1 -1 «@ -1
—Q(ho + hl) 0 —Asy hy —hy —Vs ﬂ 2h1
3(ho+h1)> 0 As —R2 —h3 -V || a | | —3n2 54
—4(h0 + hl)S 0 —Ay h? —h% —V4 b - 4h? ’
5(h0 + h1)4 0 Ajs —hfl1 —hg —V5 c —5]“/11
—6(h0 + h1)5 0 —Ag h? —hg —Vs d 6h?

where N
hk— (ho + hl) )

A, == ot )
k h() y

_ (hz + hg)k - hlf
vk: — hg )

with ho = hj, hi = hj+1, ho = hj+2, h3 = hj.;,.g.
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The coefficients in Eq. (44) for the right-sided, implicikgi-order estimates are given by the

solution to the following linear system:

1 1 -1 -1 -1 -1 o -1
0 2(h2 + h3 —AQ hl _h2 —VQ ﬁ —2h2
0 3(h2 + h3)2 Ag —h% —h% —V3 a o —3}7% (55)
0 dlha+he) —Ay K~k —Vy || b || —and |’
0 5(h2 + h3)4 A5 —hil —h% —V5 C —5h§
0 6(hy+hs)® —Ag h} —h} —Vg d —6h3
where .
N R
ho
_ (ha+hs)" — nk
vk} - h3 )
with ho = hj,Q, hi = hjfl, hy = hj, h3 = hj+1.
A.2 Edge slopes
The coefficients in Eq. (16) for the implicit third-order esates are given by
N hq (h% + hohy — h%)
(o + hn) [(ho + n)? + hoha |
3 ho (hi 4+ hoh1 — hj)
(ho + h1) [(ho Fh)? hohl} ’
a 0, (56)
) —12hohy
(ho + h1) [(ho Fh)? hohl}
12hghy
C 2 s
(ho + h1) [(ho Fh)? hohl}
d 0,

Whereho = hj, hy = hj+1.
The coefficients in Eq. (16) for the implicit fifth-order esttes are given by the solution to the

following linear system:

0
2
6h1
—12h3
20h3
—30h{

0

2
—6hs
—12h3
—20h3
—30h3

1 1 1 1 o 0
—AQ h1 _h2 _VZ 5 -1
_AB h% h% V3 a o 0
AL B3 BV, b= o | (57)
—A5 hzll h% V5 C 0
As —h} h} Vs d 0
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where i
hY — (ho + h1)

Ay =0TV

k hO 5

ho + h3)" — Rk

v, —theths) —hy
hs

with ho = hjfl, hi = hj, he = hj+1, hs = hj+2.
The coefficients in Eq. (45) for the left-sided, implicit fiforder estimates are given by the
solution to the following linear system:

0 0 1 1 1 1 « 0
2 2 —Ay hi —hy -V Jé] -1
G(ho + hl) 0 7A3 h% h% V3 a _ 76]7,1 (58)
—12(ho +h1)> 0 Ay —h3 h3 Vyu b | | 12n% |
20(h0 + h1)3 0 —Ag, hil h% V5 C —20h‘;’
—30(h0 + h1)4 0 Ag —h? hg Ve d ?)Oh‘ll
where .
Rk — (ho + h1)
A 1 AT
k ho )
(ha + hs)* — b}
Vy =———"+——=
k h3 ’

with ]’LO = hj, hi = hj+1, ho = hj+2, h3 = hj+3.
The coefficients in Eq. (46) for the right-sided, implicittfiforder estimates are given by the
solution to the following linear system:

0 0 1 1 1 1 a 0
2 2 ~As  hy  —hy —V, B ~1
0 —6(h2 + hg) —Ag h% h% V3 a o 6h2 (59)
0 —12(he+hs)> Ay —h3 K VY, b | T | 1282 |
0 —20(hy+hs)® —As; h* RV c 20h3
0 —30(hy+hs)* Ag —h® k) Vs d 30h3
where .
A, i = (ho + ha) ,
ho
k 1k
v, - (hg + hg) hs 7
h3

with ho = hj_g, hy = hj_l, hy = hj, h3 = hj+1.
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Orderofaccuracyl o« | 8 | a | b | ¢ | d
4 (ihs) 1l |||y
Sh) || b || R E] 0
St | b | %% 8|

Table 1: Coefficients to use in Eq. (13) giving implicit edge-value estimates on umifpids.

Order of accuracy, o« | f3 a b ¢ d
- 1 1 6 6
4 (Zh4) 10 10 0 ~5h 5h 0
; 2 2 3 51 51 3
6 (i) i | 11 I4n | T 34h | 24k | 1R

Table 2: Coefficients to use in Eq. (16) giving implicit edge-slope estimates on umifpids.

Scheme alpB| a b c d
Left-sided, Eq. 43)| ¢ | 2| 2 | b | _L
Right-sided, Eq. (44) 2 | L | - L | & | 2| 8

Table 3: Coefficients to use in Eqs (43) and (44) giving one-sided, sixth-ondglicit edge-value estimates on
uniform grids.

Scheme « I] a b c d
Left-sided, Eq. (45) | & | —o%5 | —anr | 22 | -2 | &
Right-sided, Eq. (46) — 5 | & | —g5 | = | — 44 | &

Table 4: Coefficients to use in Eqs (45) and (46) giving one-sided, sixth-onaglicit edge-slope estimates on
uniform grids.
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Unlimited Limited
Error CPU time Error CPU time
PPM hy 4.915566 x 1073 1.00 2.119396 x 1072 1.00
PPMihy 4.978881 x 1073 1.06 1.876330 x 102 0.95
PQMihy/ihs | 2.621667 x 10~* 1.17 1.224886 x 102 1.01
PQMihg/ihs | 3.606455 x 1076 1.30 1.017189 x 1072 1.13

Table 5: Errors (L2-norm) and computational times (relativerem h4) for unlimited and limited remapping
experiments in a closed domain (as described in Figure 17b). For eachd000 remapping cycles are carried
out between a uniform grid comprising 100 cells and a nonuniform gndpesing 90 cells. The unlimited
and limitedpPM h4 real computational times are 69 s and 76 s, respectively.

Unlimited Limited
Resolution| CPU time | Resolution| CPU time
PPM hy 280 4.77 60 1.09
PPMihy 300 4.82 60 1.00
PQMihy/ihg 125 5.68 50 0.95
PQMihg/ihs 50 1.00 50 1.00

Table 6: Resolution needed and computational time incurred to roughly match the(&g-norm) obtained
with PQM ¢h6/ih5 for a remapping experiment (as described in Figure 17b) in a closethidoconsisting
of 10000 remapping cycles. Each cycle is carried out between a omiad and a nonuniform grid whose
number of cells is decreased by 10% relative to the uniform grid.
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(i) Piecewise polynomial reconstruction based on cell averages.
T T T T T T

: / cell average

reconstruction

(ii) A new grid is considered and superimposed on the reconstructed profile.
T T T T T

-

(iii) Cell averages are computed by integration. Reconstruction is repeated.
T T T T T

~.

Figure 1: A regridding-remapping algorithm occurs in three steps. (i) Piecewi§mpmial reconstruction
based on cell averages on a given grid. (ii) A new grid is considerddsaperimposed on the reconstructed
profile. (iii) Analytical integration of the reconstructed profile over the ceflthe new grid allows to compute
the cell averages for this new grid. The reconstruction step is thentegpekhis illustration depicts the general
case of reconstructions on nonuniform grids featuring discontinuitiesacell interfaces.
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Figure 2: The average over cejlof width h; is notedu,. For convenience, the mappingof [x];% , ijr%]

onto¢ € [0, 1] is used within each cell. The local polynomial reconstructiy(¥) is represented by the dashed
line. Variables at cell interfaces are identified by half-integer indexes) as the edge valu%+%.
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cubic centered on
edge j + %

parabola centered
on cell j+1

parabola: centered
on cell j

Figure 3: Explicit estimates for the edge valueH% using (a) an even-order accurate edge-centered cubic
spanning four cells and (b) two odd-order accurate cell-centereabpkas spanning three cells. Because the
parabolas are cell-centered, they provide two different estimatesdadpe valueq,L;+ 1 anduj*+ 1, leading

2 2
to a discontinuous reconstruction.
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T T T T
—— PPM hg3 (4:74)
—— PPM hg (4:06)
—— 'PPM ihy4 (3.39)

—— PQM hs/ha (3.87)
—— PQM he/hs (3.62)
—— PQM thg/ihe (2.90)

Figure 4: Reconstructions of a Gaussian on a periodic domain usingR®)with three different edge-value
estimates and (bpQm with three different edge-value estimates. The dashed line is the excfie @nd

cell averages are depicted by horizontal solid lines. Thenorms of the error % 10?) are indicated in the
legend, besides their respective schemes. In both cases, implicit estiowdperform their explicit equivalent,

both visually and by comparing the norms. The implig#tm ih4 yields a lower error than both expligtQm
schemes.
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Figure 5: Orders of accuracy of reconstruction schemes for a Gaussian)amifarm grids and (b) ran-
dom nonuniform grids. Convergence rates are given next to tharseimame, between parentheses. Ran-
dom nonuniform grids are modified uniform grids for which all edge tmoes are perturbed by a uniformly-
distributed number ifi—h/4, h /4], whereh is the uniform grid size. Blue and red least-square linear curves are
for pPMandpPQM schemes, respectively. Dashed and solid lines are for explicit and ihrggdieemes, respec-
tively. Whatever grid type is considererlPMandPQm are at least third- and fifth-order accurate, respectively,
when the order of accuracy for the edge-value and edge-slope tsgim&igh enough. At low resolutiorpm

tha turns out to be an excellent candidate, outperformed onlydy ih4/ih4d andPQM ih6/ih6 — see inset

on panel (a)PQMmih4/ih4, however, is only fourth-order accurate.
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Figure 6: One-sided and centered slopes, as defined by Eq. (18). Accordigg.t¢17), the limitedPLM
slope is the centered one¢, which serves as reference for the slope consistency checks in thedlingte
algorithm.
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(a) (b) (c)

ur < Uc — |urp — uc uLHﬂc*hTCkﬂ No change

Figure 7: Estimations of edge values may be unbounded and, therefore, needirtaited to lie in the range
defined by neighboring cell averages. The above example shows hefivedge value is limited using Eqg.
(19). The dashed line represents thav reconstruction based on the limitedm slopes. (a-b) The left edge
value is unbounded and the minimum betwéep — @c| and %C\a\ is used to modify the edge value. (c)
The estimate is bounded and is not modified. The disté§c|e| is the absolute difference between the cell
averageic and the value of theLm reconstruction at either cell edge.
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(a) : : (b)

-consistent
‘inflexion point

- inconsistent
. inflexion point

() : (d)

Figure 8: Examples of quartics that can be built based on bounded edge valde®rsistent edge slopes.
The limitedPLM slopec is assumed to be positive, as are the edge slopes. (a) The quartic is matiaonic
nor bounded by neighboring cell averages. It features two inflexant® one of which is inconsistent with
respect tar. (b) The quartic is nonmonotonic but is bounded and it also has two infigomts, one of them
being inconsistent. (c) The quartic is nonmonotonic and bounded. kif@@consistent inflexion point. (d)
The quartic is monotonic, bounded and it has two consistent inflexion p&etsonstructed quartics (a-c) are
not acceptable while quartic (d) is acceptable.
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(a) (b)

unlimited

limited

Figure 9: Dashed and solid curves are unlimited and limited quartics, respectively.arages are repre-
sented by horizontal lines spanning the entire cell. Limiting is conducted foyaémg both inflexion points
to collapse on one of the edges. This is done by adjusting the edge slapé&slgxion points are located on
the left edge. Curvature is positive, which is the only possibility that doésintate local conservation (the
quartic average must be equal to the cell average). (b) Inflexiorigpaia located on the right edge. Curvature
is negative. In both examples, the unlimited quartics have bounded ediges\and consistent edge slopes
(positive). Yet, they have inconsistent inflexion points.
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(a) (b)

Figure 10: In both examples, the quartig; obtained after the first step of the limiting algorithm is nonmono-
tonic but the edge values are bounded and the edge slopes are condiiesecond step of the algorithm
guarantees monotonicity by having both inflexion points collapse onto otie @dges (the left edge in these
examples). A first-attempt quartig¢; is produced that has a single-signed curvature, which is done by adjustin
the edge slopes via (26)-(27) (or via (31)-(32) when inflexion poirdd@cated on the right edge). If one of
the adjusted edge slopes is inconsistent, it is necessary to adjust théepggs value to obtain the definitive
monotonic quarti@)s. (a) The first-attempt quartiQs has an inconsistent left slope. Monotonicity is restored
by setting the slope to zero and adjusting the right edge value, which medue quartic.. (b) Q5 has an
inconsistent right slope. The monotonic quadje is obtained by setting this slope to zero and adjusting the
left edge value.
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Figure 11: Dispersion relations for unlimitedPm and PQM advection schemes using Eq. (36), on uniform
grids with a CFL number of 0.25. The left panel is indicative of nhuméritiiusion while the right panel
shows the phase error. All explicit schemes are the most diffusidefeature the largest phase error for
higher wavenumbers (shorter wavelengths) relative to the grid sizeb&st candidates aremihy andPQM
th6/ih6, which introduce less numerical diffusion and exhibit better phaseepties. PQM :h4/ih4 also has
good properties but is only fourth-order accurate. To be noted is ttlerparforming phasal behavior Pm

h4, which is the originaPPM scheme. Schemes using explicit and implicit estimates for the edge valdes a
slopes are represented with dashed and solid lines, respectively. luedlines are used fePmandPQm
schemes, respectively. Shown values {rérare equivalent to wavelengths of, from left to righitz, 6h, 5h,

4h, 3h and2h.
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Figure 12: Unlimited advection experiments on uniform grids, in a periodic domain. foison of the
advected solutions with the exact solution (black line) after 10 revolutions $election of unlimited (agpPm
schemes and (lIBQM schemes. The initial condition is given by Eq. 38. The grid has 160 cedlstenCFL

number is 0.25. The interpolation between cell averages is not thestegoted profile and is drawn for visual
convenience.
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Figure 13: Limited advection experiments on uniform grids, in a periodic domain. Goiepn of the advected
solutions with the exact solution (black line) after 10 revolutions for a selectitimited (a)PPmschemes and
(b) PQM schemes. The initial condition is given by Eq. 38. The grid has 160 callstenCFL number is 0.25.
The interpolation between cell averages is not the reconstructed pmdilis drawn for visual convenience.
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Figure 14: Limited advection experiments on nonuniform grids, in a periodic domaiomgarison of the
advected solutions with the exact solution (black line) after 10 revolutiona &election of limited (appPm
schemes and (lHQM schemes. The initial condition is given by Eq. 38. The grid has 160 cedlstenCFL
number is 0.25 relative to the smallest grid cell. The interpolation betwdksvegages is not the reconstructed

profile and is drawn for visual convenience.
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Figure 15: Advection of a Gaussian on a low-resolution uniform grid containing 20 .cdllse domain is
periodic and results are shown after one revolution (CFL number i9.0(2p The unlimitedPPMih, scheme
outperformsPQM hs/ha, the latter being slightly more diffusive as suggested by the dispersidpsain
Figure 11. (b) The limitation oPPM ¢hs somewhat inhibits its intrinsic performance, as it now performs
similarly to PQM hs/hs. The interpolation between cell averages is not the reconstructed @wélles drawn
for visual convenience.
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Figure 16: Orders of accuracy of (a) unlimited and (b) limited advection schemes @aussian on uniform
grids. Convergence rates are given next to the scheme name, hgbtaemtheses, and are established with
respect to the Euclidian norm defined by Eq. (39). The convergetes are roughly the same on nonuniform
grids and are not shown. Note the sixth-order accuracy@¥ he/hs andPQM the /ihs. Also, notice how
PQM iha/iha performs better tharQMm hs/ha at lower resolution but is outpaced at higher resolution. The
convergence rates for the unlimited schemes are the same as that@bdaindimited reconstruction in Figure

5. The resolution of the Gaussian extremum is only second-orderaecwrhich is dominant for limited
schemes.
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Figure 17: Unlimited remapping experiments in a closed domain using (a) low-orderdary conditions and
(b) high-order boundary conditions. Each remapping cycle congptieefollowing steps: (i) reconstruction on
a uniform grid composed of 20 cells, (ii) remapping onto a nonuniforich gsmposed of 18 cells that changes
at each cycle, (iii) reconstruction on the nonuniform grid and (iv) nepirag back onto the uniform grid. The
light gray, thick line is the exact solution and the black thin lines represemntettenstructed profiles on the
uniform grid, shown after 1000 remapping cycles. Notice the strongenéia of the boundary conditions on
the overall results.
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Figure 18: Convergence analysis for the unlimited experiment described in Figurantl carried out on
gradually finer grids. For each grid, 500 remapping cycles are agaduand thelL.-norm of the error is
computed between the exact and reconstructed profiles. (a) Lasv-bedindary conditions are used, which
reduces the convergence rate down to 2.5 for all schemes. (b)dtiégi-boundary conditions allow to preserve
the nominal order of accuracy of all schemes.
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